Positioning of small particles by an ultrasound field excited by surface waves.
نویسندگان
چکیده
A method for the controlled positioning of small particles in one or two dimensions by an ultrasound field excited by a surface wave is presented. Particles of a diameter between 10 and 100 microm placed on a surface can be concentrated at certain locations and moved over the surface. In other approaches it is possible to let the particle levitate freely in the fluid. However for the use of ultrasonic positioning in for example microassembling it is necessary to move particles over a surface as well as to let them levitate over the surface. Physical principle: A two- or three-dimensional ultrasound field is excited in a fluid filled gap between a rigid surface at the bottom and a vibrating surface of a solid at the top. The height of the gap varies between 0.1 and 2 mm. A one-dimensional sinusoidal vibration of the upper surface excites a two-dimensional ultrasound field in the fluid. Particles that are arbitrarily distributed on the lower surface will be concentrated in lines by the ultrasound field. First the calculation of the field of forces on particles in the fluid layer is presented. Then the dispersion relation of a vibrating plate which is in contact with a fluid on one side is derived. The technical setup will be introduced. Finally the experiments are shown and compared to the theoretical results.
منابع مشابه
A micro-particle positioning technique combining an ultrasonic manipulator and a microgripper
The acoustic radiation force acts on particles suspended in a fluid in which acoustic waves are present. It can be used to establish a force field throughout the fluid volume capable of positioning the particles in predictable locations. Here, a device is developed which positions the particles in a single line by the sequential use of two excitation frequencies which have been identified by a ...
متن کاملGeneration of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules
Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...
متن کاملInvestigation of acoustic properties of silica coated gold nanoparticle as contrast agent for Ultrasonography
Interoduction: Ultrasound images have often low contrast due to small differences in acoustic impedance between different tissues. Air or gas microbubbles that surrounded by membrane are most of the contrast agents in ultrasound imaging. Problems such as instability in sound pressure and inability in penetrating from the blood vessel into body tissues limited the use of microbubbles into the in...
متن کاملSoil Remediation Using Nano Zero-valent Iron Synthesized by an Ultrasonic Method
A new method for the synthesis of nano zero-valent iron (nZVI) was developed in the present study. Ultrasonic waves, as a novel method, were used to synthesize the nanoparticles. The morphology and surface compositions of the particles were characterized by using FESEM, XRD, BET, and particle size analyzer. The synthesized nanoparticles were then utilized as a Fenton-like catalyst to degrade of...
متن کاملInvestigation on Process Parameters of Ball Screw Finishing Using Magnetic Abrasive Field
Surface finishing is one of the most significant steps in industries which are engaged with surface quality. Finishing by magnetic field is a new method of surface finishing. In this process, machining is executed in mechanical way and semi-homogeneous abrasive slurry performs finishing of surfaces. Needed force to grind surfaces is made by magnetic field. Therefor this method is considered as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics
دوره 42 1-9 شماره
صفحات -
تاریخ انتشار 2004